Monday, April 27, 2009

Rolling robots



For simplicity, most mobile robots have four wheels. However, some researchers have tried to create more complex wheeled robots, with only one or two wheels.

* Two-wheeled balancing: While the Segway is not commonly thought of as a robot, it can be thought of as a component of a robot. Several real robots do use a similar dynamic balancing algorithm, and NASA's Robonaut has been mounted on a Segway.[27]
* Ballbot: Carnegie Mellon University researchers have developed a new type of mobile robot that balances on a ball instead of legs or wheels. "Ballbot" is a self-contained, battery-operated, omnidirectional robot that balances dynamically on a single urethane-coated metal sphere. It weighs 95 pounds and is the approximate height and width of a person. Because of its long, thin shape and ability to maneuver in tight spaces, it has the potential to function better than current robots can in environments with people.[28]
* Track Robot: Another type of rolling robot is one that has tracks, like NASA's Urban Robot, Urbie.[29]

[edit] Walking robots
iCub robot, designed by the RobotCub Consortium

Walking is a difficult and dynamic problem to solve. Several robots have been made which can walk reliably on two legs, however none have yet been made which are as robust as a human. Many robots have also been build that walk on more than 2 legs; these robots being significantly more easy to construct. Hybrids too have been proposed in movies as iRobot, where they walk on 2 legs and switch to 4 (arms+legs) when going to a sprint. Typically, robots on 2 legs can walk well on flat floors, and can occasionally walk up stairs. None can walk over rocky, uneven terrain. Some of the methods which have been tried are:

* ZMP Technique: The Zero Moment Point (ZMP) is the algorithm used by robots such as Honda's ASIMO. The robot's onboard computer tries to keep the total inertial forces (the combination of earth's gravity and the acceleration and deceleration of walking), exactly opposed by the floor reaction force (the force of the floor pushing back on the robot's foot). In this way, the two forces cancel out, leaving no moment (force causing the robot to rotate and fall over).[30] However, this is not exactly how a human walks, and the difference is quite apparent to human observers, some of whom have pointed out that ASIMO walks as if it needs the lavatory.[31][32][33] ASIMO's walking algorithm is not static, and some dynamic balancing is used (See below). However, it still requires a smooth surface to walk on.
* Hopping: Several robots, built in the 1980s by Marc Raibert at the MIT Leg Laboratory, successfully demonstrated very dynamic walking. Initially, a robot with only one leg, and a very small foot, could stay upright simply by hopping. The movement is the same as that of a person on a pogo stick. As the robot falls to one side, it would jump slightly in that direction, in order to catch itself.[34] Soon, the algorithm was generalised to two and four legs. A bipedal robot was demonstrated running and even performing somersaults.[35] A quadruped was also demonstrated which could trot, run, pace, and bound.[36] For a full list of these robots, see the MIT Leg Lab Robots page.
* Dynamic Balancing or controlled falling:A more advanced way for a robot to walk is by using a dynamic balancing algorithm, which is potentially more robust than the Zero Moment Point technique, as it constantly monitors the robot's motion, and places the feet in order to maintain stability.[37] This technique was recently demonstrated by Anybots' Dexter Robot,[38] which is so stable, it can even jump.[39] Another example is the TU Delft Flame.
* Passive Dynamics: Perhaps the most promising approach utilizes passive dynamics where the momentum of swinging limbs is used for greater efficiency. It has been shown that totally unpowered humanoid mechanisms can walk down a gentle slope, using only gravity to propel themselves. Using this technique, a robot need only supply a small amount of motor power to walk along a flat surface or a little more to walk up a hill. This technique promises to make walking robots at least ten times more efficient than ZMP walkers, like ASIMO.

No comments:

Post a Comment